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The connection between the Bessel discrete variable basis expansion and a specific form of an orthogonal set
of Jacobi polynomials is demonstrated. These so-called Zernike polynomials provide alternative series
expansions of suitable functions over the unit interval. Expressing a Bessel function in a Zernike expansion
provides a straightforward method of generating series identities. Furthermore, the Zernike polynomials may
also be used to efficiently evaluate the Hankel transform for rapidly decaying functions or functions with
finite support.

1. Introduction

The discrete variable representation (DVR) technique, intro-
duced and developed by Light and co-workers,1 has proven to
be a useful procedure in many applications.2 This approach
emphasizes the duality between function spaces and their
discrete analogues which, as a practical matter, leads to
numerical efficiency based upon physical intuition. For example,
one of the first, and most powerful, analytical techniques
typically taught in quantum mechanics is the expansion of a
wave function in terms of some suitable basis set composed of
functions selected for their physical suitability, or perhaps, their
ease of integration, such as Gaussian forms. Such expansion
sets are generically known as Galerkin bases3 and in the most
favorable circumstances possess exponential convergence. The
outstanding difficulty with this powerful approach, though, is
the difficulty arising from the evaluation of the potential matrix
elements. For complicated, many-body potential functions it is
difficult to obtain a suitable Galerkin-type basis. Thus, the
remarkable utility of a suitable DVR resides in its ability to
greatly facilitate the evaluation of these difficult potential energy
matrix elements since physically extraneous points may be easily
recognized and discarded. After the initial successful applica-
tions to spectroscopic line identification in large molecules,
extensive generalization of the method led to diverse applica-
tions.2

A particularly useful DVR basis set on the radial half-line is
based upon the Fourier-Bessel, or more generally the Dini,
representation of a function.4 The Fourier-Bessel expansion
attempts to expand a suitable function in terms of the positive
zeros of a chosen order Bessel function. The zeros scale the
argument of the Bessel function to ensure orthogonality on the
unit interval.5 A more general choice of argument scaling, rather
than the zeros of the Bessel function, is due to Dini, and it has
the technical advantage of ensuring convergence of the series
at the interval endpoints.

Solutions to the radial Schrodinger equation and the closely
related Hankel transform may be effectively expressed in terms
of this representation. More specifically, if a radial cutoff is
introduced with subsequent scaling of the radial half-line to the
unit interval, two classes of DVR basis sets may be realized.
The first class is constructed by diagonalizing the position

coordinate in any suitable orthogonal set which essentially
produces a Gaussian quadrature.6 The second, generalized
procedure also produces a radially bounded version of the
Fourier-Bessel series designed for both cylindrical and spherical
Bessel transforms.7 Both DVR classes are closely related to the
development below which is also intrinsically based upon the
bounded radial interval. In the context of a DVR based upon
radially unbounded functions, though, it has been conjectured
that a relationship to an orthogonal (finite) polynomial set should
exist for this particular DVR basis set.8 Motivated by this
suggestion, an explicit connection between the Bessel series and
a form of the Jacobi polynomials may in fact be demonstrated
for the radially bounded representation.

In the following, a brief summary of the properties of the
Zernike polynomials will be presented; their relationship to the
Bessel series is then established with some interesting resulting
identities. The next section emphasizes the specialized use of
the two representations in the evaluation of Hankel transforms
with application to a simple radial function. A discussion of
the limitations of this approach concludes the manuscript.

2. Bessel-Zernike Expansion

The Zernike, or circle polynomials, are well-known in optical
physics to be very convenient for expressing the various
diffractive aberrations in a lens.9 This basis set is specifically
contructed to be orthogonal on the unit interval with radial
weighting

whereRn
l (F) signifies a Zernike polynomial of integer ordern

and integer degreel as a function of the radial variableF. The
Zernike polynomials are a special case of the Jacobi polynomi-
als9,10

wherePn′
(R,â)(x) are the standard Jacobi polynomials11 with x )

1 - 2F2, â ) 0, R ) l, andn′ ) (n - l)/2. Consequently, these
polynomials possess several three-term recurrence relationships
for both degree and order; they satisfy the hypergeometric† Part of the special issue “John C. Light Festschrift”.
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differential equation; and, additionally, the functions have
definite parity for even and odd order. As a standard orthogonal
polynomial set, the Jacobi polynomials are intimately related
to other, better known, orthogonal sets. Specifically, whenâ )
0 andR ) 0, the Legendre polynomials of ordern′ are obtained;
when â ) R ) λ - 1/2, the Gegenbauer, or ultraspherical,
polynomials of ordern′ and degreeλ arise; and the Chebyshev
polynomials of ordern′ are recovered whenλ ) 0.4

By completeness on the unit interval, a suitable function,f
(F), may be expanded in a Zernike basis set

where the overlap coefficients are

In particular, monomial powers ofF could be so expressed so
that a function with a convergent Taylor’s series expansion could
be rewritten in terms of the Zernike basis set. (This approach is
not suitable for numerical applications because the resulting
matrix inversion would be unstable for large orders.) In
applications of the DVR using the Zernike expansion, the
quadrature points and weights are readily obtained from standard
computational techniques that generate the Gauss-Jacobi
quadrature values for the special choices ofR andâ above.

Although the Zernike polynomials are most simply expressed
as finite sums of integral powers ofF, these polynomials may
be equivalently defined by a Rodrigues' differentiation formula
that is most convenient for integration on the unit interval. Using
the differentiation formula, the integral of the product of an
integral order Bessel function and a Zernike polynomial with
matching degree may be shown to be another Bessel function9

An immediate consequence of this simple overlap integral is a
direct connection between Bessel function and Zernike poly-
nomial expansions on the unit interval.

The Fourier-Bessel series expansion expresses some suitable
function,f(F), on the unit interval in terms of a Bessel function
of fixed order,Jl(F), whose argument is scaled by the zeros of
that Bessel function,Rlm

where the coefficients,cm,are determined by the overlap integrals

Applying the Fourier-Bessel expansion to a fixed degree Zernike
polynomial produces

and, using eqs 3 and 4, a fixed order Bessel function may be
expanded as

displaying the expected duality between the two basis set
choices. These expressions thus relate the Fourier-Bessel series
to a series of orthogonal polynomials on the unit interval.

3. Special Cases

The complementary series representations above lead to some
interesting special cases. For example, whenn ) l * 0, the
Zernike polynomial reduces toRn

n(F) ) Fn. Thus, eq 8 implies
that

which is a well-known result.4 The series expansion in eq 8
clearly generalizes this expression whenn * l. There is a
subtlety that should be noted when handling the Fourier-Bessel
series, though. In general, the series expression for suitable
functions will not converge atF ) 1.5 Indeed, inserting this
value into eq 10 leads to a contradiction. To obtain a convergent
expansion over the entire unit interval, the Dini expansion must
be used in place of the Fourier-Bessel expansion.5 This form
replaces the coefficients in eq 7 with the integral

where theγlm are now the zeros of the equationzJ′l(z) + aJl(z)
) 0. The value ofa determines whether the expansion must
include additional terms in the series expansion, providing
absolute convergence over the unit interval.5 That is, whenl +
a > 0, no additional terms are required. Ifl + a ) 0 or l + a
< 0, then an additional term appears in the series expansion. It
should be noted that the use of the Dini expansion is not
significantly more complicated than the simpler Fourier-Bessel
choice since the roots appearing in the expansion must be
determined numerically in any event. The choicea ) 0 when
l > 0, for example, would be useful for numerical evaluations.12

The above expressions also lead to some simple summation
formulas. Using eqs 1 and 8, it is straightforward to derive the
equality

which produces, in the special case ofn ) l

Similarly, by using the orthogonality of the scaled Bessel
functions on the unit interval, eq 9 leads to a discrete form of
the orthogonality relationship

4. Hankel Transform Application

The application of the Fourier-Bessel series to the numerical
evaluation of thelth order Hankel transform has been indepen-
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dently discovered several times in chemical and optical phys-
ics.13 The complementary relationship of the Zernike expansion
to the Fourier-Bessel discretization of the Hankel transform
suggests another route to the evaluation of the transform. Recall
that thelth order Hankel transform and its inverse are integra-
tions over the infinite radial interval with a Bessel function
kernel

and

Since the Zernike overlap integral in eq 5 separates the product
in the argument of a Bessel function, a Zernike basis expansion
of the transform kernel offers another approach to the evaluation
of the Bessel integration. These integrals are manifestly over
an infinite range. To use the orthogonality of either the Fourier-
Bessel or Zernike functions over the unit interval, it is first
necessary to choose a cutoff and scale the integral to the unit
interval. (If the function vanishes identically beyond some finite
value only a scaling is required of course.) Thus, the original

transform integral is approximated by

for a finite cutoff value,R. Re-expressing the Bessel integration
by a sum over Zernike polynomials yields

Several unusual aspects of this expression should be noted. If
the function,f(F), has a finite Taylor’s series expansion and
vanishes identically beyond some finite value, the Zernike series
will truncate and the overlap integrals are straightforwardly
obtained. Also, even whenf(F) extends over the entire half-
line, the evaluation of the overlap integral may be performed
at arbitrary points, that is, by any suitable integration scheme.
Since thek dependence has been separated from the overlap
integration, the high accuracy of the Bessel function evaluation
is not compromised by any approximations incurred in the
evaluation of these integrals. Thus, with suitable series conver-
gence, it might be possible to obtain derivatives or perform other
operations upon the transformed function. In one sense, the
Zernike expansion fits the transformed function to a series of
Bessel functions. As another practical point, the various terms
in the expansion are independent of one another so that, if the
series is first calculated forN terms, the extension to, say, 2N
terms only requires anotherN evaluations. Finally, the value of
the selected Zernike polynomials may be stored at the integration
points for continued evaluation.

As a simple example of this approach, the fourth order Hankel
transform of the associated Laguerre function,L6

4(F) exp(-F),
was evaluated with a cutoff at 30 and including 100 terms in
the expansion. The Zernike overlap integrals were calculated
by Simpson’s rule quadrature with a spacing of 0.001 on the
unit interval. No attempt was made to optimize any of these
quantities. The resulting approximate transform, scaled to its
largest value, is plotted in Figure 1. Since this particular Hankel
transform also has an analytical expression, a comparison to
the exact result is possible. The difference between the ap-
proximate and exact transform is shown in Figure 2. For this
range of transform variable,k, the maximum deviation is about

Figure 1. Approximate fourth order Hankel transform of a Laguerre
function obtained from the Zernike expansion.

Figure 2. Difference between the analytical and approximate fourth
order Hankel transform of the selected Laguerre function.
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Figure 3. Inverse Hankel transform of the chosen Laguerre function
by Fourier-Bessel series evaluation using the Zernike representation
of the direct transform.
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0.0006. The largest deviations are found near the origin due to
the use of a cutoff.

The inverse transform was also evaluated using the Fourier-
Bessel series expansion13 for the approximation to the direct
transform using the Zernike expansion and for the exact direct
transform using the analytical expression. The cutoff was chosen
to be the same as that for the direct transform, 30, and 256
zeros were selected as the quadrature points. The approximate
inverse transform, scaled to its largest absolute value, calculated
in this way is plotted in Figure 3 as a function of radial distance.
The difference between the exact and approximate inverse
transforms is displayed in Figure 4. Again, the largest deviations
from the exact values are found near the origin and are relatively
larger than those deviations for the direct transform.

5. Conclusions

A simple connection between the Fourier-Bessel and Zernike
polynomial expansions on the unit interval has been demon-
strated which provides an alternative understanding of the
complementarity between the Fourier-Bessel series and a
particular orthogonal polynomial basis set. This complementarity
has the practical consequence of offering a choice of basis set:
rapidly decreasing functions might be approximated more
efficiently by simple polynomials than by the superposition of
many Bessel functions. Indeed, some classes of strictly truncated
functions are much more suited to a Zernike basis set than the
Fourier-Bessel basis set.

As described above, the Zernike expansion might also be
useful for evaluating certain classes of Hankel transforms. For
functions that are nonzero for the entire infinite interval, though,
it is necessary to introduce a cutoff parameter. This strategy is
often problematic since the long range contributions to the
integral are lost resulting in errors near the origin of the
transformed function. Another difficulty with the Zernike
expansion is the calculation of high order Zernike polynomials
which might be required for a large number of summation terms.
These polynomials are themselves rapidly oscillating and their
evaluation can be unstable. Large order approximations exist
for the Jacobi polynomials which avoid the recurrence relations
and are suitable everywhere except near the endpoints.4 These
approximations might be useful for some classes of functions
but are probably not suitable for general applications. Overall,
the general numerical efficacy of the Zernike expansion is
currently unresolved, but it is clear that the complementarity to
the Fourier-Bessel expansion provides another approach to the
approximation of functions on the unit interval.
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